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Solution of the Finline
Step-Discontinuity Problem
Using the Generalized Variational Technique

KEVIN J. WEBB, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

Abstract —The finline step discontinuity is an essential component in
millimeter-wave .integrated circuits. The discontinuity problem is for-
mulated using. an unknown magnetic current in the transverse junction
plane. A numerical solution is obtained by a method termed the Gener-
alized Variational Method, and illustrative examples of scattering parame-
ter calculations are given.

1. INTRODUCTION

INLINE TECHNOLOGY has gained popularity- for

the realization of millimeter-wave integrated circuits.
Considerable theoretical material has been published con-
cerning the analysis of uniform finline [1]-[5]. However,
only a relatively few papers have been published on the
characterization of finline discontinuities [6]-[9].

The solution of the general finline discontinuity problem
is fundamental to designing many millimeter-wave in-
tegrated-circuit components, such as filters and matching
structures. The traditional mode-matching approach has
been applied to the discontinuity problem with some success
[6]-[%9]. A novel approach for solving this problem using
unknowns in the transverse junction plane is presented
here. The method is called the Generalized Variational
Technique (GVT), which is analogous to the Conjugate
Gradient Method [10]. The Generalized Variational method
is an extension of the classical variational method, which
represents the unknown in terms of one function [11].
Techniques presented here allow an improved solution by
representing the unknown in terms of a number of char-
acteristic functions, which are generated by means of pre-
scribed routines. The method of formulation and numerical
solution together with examples of computed results are
given.

II. FORMULATION OF THE DISCONTINUITY PROBILEM
UsING UNKNOWNS IN THE JUNCTION PLANE

The unilateral finline structure shown in Fig. 1 is consid-
ered specifically. A finline discontinuity consisting of a
step change in the slot width is shown in Fig. 2. This
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Fig. 1. Unilateral finline structure.

Fig. 2. Single step discontinuity in finline.

problem can be formulated using mode functions on either
side of the discontinuity [12]. Consider the junction of two
waveguides, with waveguide A for z <0 and waveguide B
for z> 0. The transverse field for z <0 and z> 0 can be
expressed in terms of the mode functions in waveguides A
and B. Consider that I modes are used in this representa-
tion. A representation for the junction can employ equiv-
alent magnetic currents over the transverse junction plane
backed by perfect electric conductors, which radiate into
both waveguides. For the discontinuity of Fig. 2, the
equivalent magnetic currents exist over the complete cross
section of the finline shielding enclosure. An integral oper-
ator equation can be derived using the Green’s function for
each waveguide.
With I modes, the transverse fields are
I

e e+ Y ae, eV, z<Q
i=1
E={ , (1a)
> bk e, z>0 -
i=1
7
hale_yalz_ Z aihaieyaizy z<0
i=1
H=( (1b)
3 bhye V7, z>0.
i=1
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Fig. 3. Equivalent waveguide junction problem:

Rather than pursuing the regular mode-matching formu-
lation, consider an alternate approach as follows. Fig. 3
shows a representation for the junction employing equiv-
alent magnetic currents over the apertures. The total trans-
verse field for the equivalent problem is

I

1005

the mode-matching method. The solution for K via certain
iterative techniques is of interest in this paper.

Taking the inner products of (3), and using the ortho-
gonality property of the modes with normalized mode
functions, we have

J[ o Kds = 213 d, [[ 12 xe,ds
i=1 s

5

=dy (5a)

I . .

fsfhbk.de ~ Elb,.];fhbk.f X ey, ds
= s (sb)

Substitution for the d’s and b’s in (4) results in the
following integral equation, which may be used to solve for
the unknown magnetic current K:

I
2"&1(’5,)"): Zhai(x’y) ffhdi(x’,y’)-K(x’, y/) dx’dy’
i=1 s

+ i hy(x, ) ffhbi(x,’ ')

eq et —e et + ) de,e’, z<0 -
E o ' ' i=1 K(x’, y") dx’dy’. (6)
! XI: b iz >0 This equation may be interpreted in terms of the Green’s
= €€ ’ function for each guide as follows. The dyadic Green’s
function can be found simply from the mode functions
(2a) using a procedure outlined in Collin and Zucker [13].
r Equation (6) can be written as =
h e ™+ h e~ ;1 dhyeer,  z<0 2h, = [[[G,+G,][K]as’ (7)
H={ |, - s
2 bihye z>0 where
i=1 h= halx (x7 y)
. (2b) a haly (x7 y)
The fields produced in guide Aby K are E,(K), H,(K), K, (x,y)
and in guide B by -K ar:e Eb(— K), Hb(—‘K). For con- = Ky (x’, ")
! I ,
_ Z hqi}c(xﬂ y)hqix(‘x,’ y/) £ lhqix(x’ y)hqiy(x,’ yl)
G,=|' ! i , g<{ab}.

I
i=1 i=1

tinuity of E,

. 1 i
K=2XEa(K)Iz=O= Z diéxeai

i=1

(3a)

I
K=2XE(~K)l..g= ¥ b2Xe,.  (3b)
i=1
Continuity of H, requires
1 !
2h =3 dhyt ) bihy,. (4)
i=1 i=1

The solution for the unknown quantity K could be
obtained via several numerical approaches, for example,

I -
hqiy(x’ y)hqix(x,7 y,) thiy(x7 y)hqiy(x,’ y,)

The modal solutions can be determined by firstly em-
ploying a spectral-domain formulation in the plane of the
fin, and theén solving for the slot electric field. The electric
field is expressed in terms of a set of basis functions in the
context of the Galerkin method [1]-[5]. The resulting equa-
tion is first solved for the phase constants. The relative
weights of the basis functions, and, hence, the slot electric
field, are determined next. The knowledge of the modal
slot electric field can then be used to derive the modal
fields over the entife waveguide cross section by using a

* transverse resonance technique [3]. The number of modes 1

derived from this procedure is usually limited to a small
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number owing to the numerical difficulty of finding a large
number of orthogonal modes.

Following the solution for K, the mode coefficients can
be found using (5). The scattering parameters can then be
determined from these mode coefficients following a renor-
malization for unit modal power. Assuming that the modes
have been normalized for f, fe, X h,ds =1, the scattering
parameters for the single propagating mode are given by

[14]
[ [[e alx,.ﬂds]
h_-Kds s
.[s./ q1 [/f quhqldSr/z

ge€{a,b},ne {1,2}.

/2

(®)
III. SorutioN USING THE GENERALIZED
VARIATIONAL TECHNIQUE

The approach for solving the discontinuity problem pre-
sented here considers the fields at the plane of the junction,
z =0, as the unknowns. Again, consider (7), which is of the
form Lf=g, where L is an integral operator, f is the
unknown (corresponding to K), and g is the known inci-
dent field (corresponding to & ;).

The unknown quantity f may be expressed as a super-
position of characteristic functions f,, which are recur-
sively generated by using a procedure given as follows. The
unknown f can be expressed as

N
f= E cnfn‘ (9)
n=0

Consider an inner product defined by

(F,Gy= [[F*Gas. (10)

The characteristic functions f, are L-orthogonal, and satisfy

(Sos L) =08, (11)

where §,,,, is the Kronecker delta function. A suitable set
of characteristic functions can be generated by

+fua (12)

2
" nll

where u, is an auxiliary function which satisfies the ortho-
gonality property

<un’ um> gn nm-* (13)
The auxiliary function can be found by
un =u, n lLf (14)
where
1
g‘n_l h 1711—1 ’

Substituting (9) into LF,, and using the orthogonality
relationship (11) gives

_1
Cn_nn<fnag>' (15)
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The routine for generating the characteristic functions and
their coefficients can be summarized as

u
n=0 fo=—=2
O fuoll?
—ln=n+1 —-'nn=<fn,Lfn>
_ 8
" N
1
U1 = Uy — n_Lfn
fror=—2 i p o (16)
I, 1l

The Generalized Variational Technique may also be
applied to the equation LALf= L4g, where L? is the
adjoint integral operator. It should be pointed out that
LAL is positive definite; hence, the convergence of this
procedure is guaranteed to be monotonic. Now the genera-
tion routine becomes

Uy
n=0 fo=
O gl
—|n=n+1 -—>nn=(fn,LALfn)
_ L%
o,

1
Uyp1=4,— :,I_LALfn

Upi1
R
RNERE

These routines can be used to solve for the unknown
magnetic current in the junction plane of the finline dis-
continuity. A good choice for u, is 2 X e, where e is
the incident transverse E-field mode function, with a possi-
ble alternative being 2 X(e, + e,;). The coefficients c,,
and successive characteristic functions f,, are generated by
(16) or (17).

fn+l= (17)

IV. NUMERICAL RESULTS

The results given here were generated using three wave-
guide modes for construction of the Green’s function.
These modes were generated in turn by using two basis
functions for E, and E, in the plane of the fin. The basis
functions given in the Appendix were used with p =0, 1
and g =2, 4. Let us now turn to the characteristic function
solution. Referring to (16) and (17), the initial auxiliary
function u, was chosen as £ X e_;. This results in the first
characteristic function f,. Subsequent characteristic func-
tions f,, and coefficients c,, can then be generated accord-
ing to (16) and (17). The fields over the waveguide cross
section were represented discretely at (m, n) points. That
is, the magnetic currents, characteristic functions, and
waveguide modes were represented by a matrix of points
over the shielded enclosure cross section. The mode coeffi-
cients and scattering parameters can then be found by
using (5) and (8).



WEBB AND MITTRA: FINLINE STEP-DISCONTINUITY PROBLEM

°.5
E S
4 2 char. fns. 4
2.4~ d
] AL
- 'o'
'§ 8.3 : ./’
2 ] Helard -~
- g ] /- o
I -
8. 2o tmaee oo anmaare
’ ' T ]l' T { T I T I L] } ¥
2.8 3.0 3.2 3.4 s.e 3.0 4.0
x1e'®
frequency Chzd
Fig. 4. |Syy| for a discontinuity in finline with a WR-28 shield. /; =/, =

3.429 mm, 2d=0254 mm, ¢, =222, 2b=12556 mm, w; =1 mm,

w, =2 mm, m=17, n=33.

ap—— s e e e
\-1 char. fn. \-Hela.rd
n
o -28—i-
1 -~
3 S
i . 2 char. fns.

- .
: . /
L] S
§

4 .

e -
an | l | ] l
ieand T I T ] T I T I L} l T
2.8 3.0 3.2 3.4 3.6 3.8 4.¢
x10'®

frequency Chzd

Fig. 5. Phase (S;;) for a discontinuity in finline with a WR-28 shield.
5 =10, =3.429 mm, 24 = 0.254 mm, €, =2.22, 2b=2.556 mm, w; =1
mm, wy =2 mm, m=17, n=33.

There is a shortage of data in the literature for compara-
tive purposes. Consider as an example finline in a WR-28
shield, for which mode-matching data is given in the paper
by Helard ez al. [9). The finline cross section shown in Fig.
1 gives the dimensional parameters. Figs. 4-7 show the
computed scattering parameters for a step discontinuity in
finline with a WR-28 shield. The equation Lf = g is used
here with one and two characteristic functions. As the
operator L is not positive definite, a monotonically conver-
gent solution as a function of the number of characteristic
functions is not guaranteed. It is important to verify that
for the single propagating mode, the numerical results
satisfy

|S11|2 + |Szl|2 =1. (18)

In drawing a comparison with the mode-matching data, it
should be pointed out that (18) is not satisfied well in [9].
Quite good agreement for S;; using one characteristic
function was achieved. There is a significant change in the
results for one and two characteristic functions. This change
can be attributed to the small number of modes available
for constructing the Green’s function and the fact that the
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solution does not converge monotonically with an increas-
ing number of characteristic functions.

A comparison between the equation Lf =g with one
and two characteristic functions, and the equation LALf =
L“g with two characteristic functions, is given in Figs.
8-~11. Use of the positive definite operator improves the
behavior of the solution, but a larger number of waveguide
modes are required to improve the accuracy significantly.

The computed scattering parameters for a step discon-
tinuity in finline with a WR-62 shield, using the equation
Lf =g, are shown in Figs. 12-15. Equivalent circuits
for this problem using S;; have been generated by
El Hennawy and Schunemann using a mode-matching
technique [8]. A comparison with these results shows some
variation. Notice that the Generalized Variational Tech-
nique results with one characteristic function satisfy (18)
well. By increasing the number of characteristic functions
to two, the magnitude of S;; approaches the results in [8],
but due to the small number of modes in the Green’s
function, the phase of S;; and the magnitude of S,; show
some deterioration in behavior. An indication of the accu-
racy of the mode solutions and the satisfaction of (18)
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cannot be determined from this mode-matching work {6],
[8].

It should be pointed out that the maximum number of
characteristic functions, and, hence, the accuracy of the
procedure, is limited by the number of waveguide modes
that have been used to construct the Green’s function. The
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accuracy of the solution cannot be increased arbitrarily due
to the lack of availability of a large number of satisfactory
higher order modes. An approximate convergence criterion
for the maximum number of characteristic functions p,
with g modes in the Green’s function, is p < g —1.
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V. CONCLUSION

The finline step-discontinuity problem has been for-
mulated with an unknown magnetic current over the trans-
verse junction plane. A solution for this magnetic current
was obtained using an approach termed the Generalized
Variational Technique. This resulted in the scattering
parameters for the finline discontinuities. The computed
scattering parameters for example discontinuities com-
pared favorably with existing data. The approaches out-
lined can be applied to other metallized substrate wave-
guides. Further work remains to be done in order to
improve the accuracy of the solution, and it is important to
obtain experimental verification. If a larger number of
good solutions for the finline modes are used to construct
the Green’s function, more characteristic functions can be
used, resulting in a more accurate solution. It is, therefore,
necessary to improve the accuracy of the higher order
mode solutions. An investigation related to the discontinu-
ity analysis of Sorrentino and Itoh {15], which was recently
published, is currently being pursued.

APPENDIX

The expansion of the slot fields in terms of known basis
functions is

E()= T a,8,(x) (A19)
Q

E(x)= X ba,(x). (a10)
g=1

A suitable set of basis functions is an orthogonal poly-
nomial set, modified by the edge condition. The functions
used are

p=1273,.
s—£< < +K
2 SXSSTY

q=1’2a35' (A2)

} otherwise

and ¢y(x)= P(s,w), where P, (s,w) is a pulse function of
width w centered at x = s.
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