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Solution of the Finline
Step-Discontinuity Problem

Using the Generalized Variational Technique

KEVIN J. WEBB, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

.4bstract — Tbe firdine step dkcontinnity is an essential component in

millimeter-wave integrated circuits. The diseontinnity problem is for.

midated using an unknown magnetic current in the transverse junction

plane. A numerical solntion is obtained by a method termed the Gener-

alized Variational Method, and ilhrstrative examples of scattering parame-

ter calculations are given.

I. INTRODUCTION

F

INLINE TECHNOLOGY has gained popularity for

the realization of millimeter-wave integrated circuits.

Considerable theoretical material has been published con-

cerning the analysis of uniform finline [1] –[5]. However,

only a relatively few papers have been published on the

characterization of finline discontinuities [6]–[9].

The solution of the general finline discontinuity problem

is fundamental to designing many millimeter-wave in-

tegrated-circuit components, such as filters and matching

structures. The traditional mode-matching approach has

been applied to the discontinuity problem with some success

[6]-[9]. A novel approach for solving this problem using

unknowns in the transverse junction plane is presented

here. The method is called the Generalized Variational

Technique (GVT), which is analogous to the Conjugate

Gradient Method [10]. The Generalized Variational method

k an extension of the classical variational method, which

represents the unknown in terms of one function [11].

Techniques presented here allow an improved solution by

representing the unknown in terms of a number of char-

acteristic functions, which are generated by means of pre-

scribed routines. The method of formulation and numerical

solution together with examples of computed results are

given.

II. FORMULATION OF THE DISCONTINUITY PROBLEM

USING UNKNOWNS IN THE JUNCTION PLANE

The unilateral finline structure shown h-t Fig. 1 is consid-

ered specifically. A finline discontinuity y consisting of a

step change in the slot width is shown in Fig. 2. This
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Fig. 1. Unilateral firdine structure.

Fig. 2. Single step discontinuity in finline.

problem can be formulated using mode functions on either

side of the discontinuity [12]. Consider the junction of two

waveguides, with waveguide A for z <0 and waveguide B

for z >0. The transverse field for z <0 and z >0 can be

expressed in terms of the mode functions in waveguides A

and B. Consider that I modes are used in this representa-

tion. A representation for the junction cart employ equiv-

alent magnetic currents over the transverse junction plane

backed by perfect electric conductors, which radiate into

both waveguides. For the discontinuity of Fig. 2, the

equivalent magnetic currents exist over the complete cross

section of the fhhe shielding enclosure. An integral oper-

ator equation can be derived using the Green’s function for

each waveguide.

With I modes, the transverse fields are

[

eale ““’z + ~ aieaieyn’, Z<o
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Fig. 3. Equivalent waveguide junction problem.

Rather than pursuing the regular mode-matching formu-

lation, consider an alternate approach as follows. Fig. 3

shows a representation for the junction employing equiv-

alent magnetic currents over the apertures. The total trans-

verse field for the equivalent problem is

{

gal~– Yalz— ~al~l’alz+ ~ die~ieyaz, Z<o

Et=
i-l

~ bie,ie-’”z, Z>o,
iel

(2a)

[

hale–y~lz + hale Yalz— ~ dihaie’”z, Z<o

H,=
2=1

f bih,ie-yb’, Z>o
1=1

(2b)

The fields produced in guide A by K are E.(K), H.(K),

and in guide B by –K are E&(– K), Hb(– K). For con-

themode-matching method. The solution for K via certain

iterative techniqueiis of interest in this pauper.

Taking the inner products of (3), and using the ortho-

gonality property of the modes with normalized mode

functions, we have

. dk (5a)

J..
I

h~k. Kds = ~ bijjhbk. i xe~ids
s i=l s

. bk . (5b)

Substitution for the d‘s and b‘s in (4) results in the

following integral equation, which may be used to solve for

the unknown magnetic current K:

2ha1(x, y) = ~ hai(x, y) jjh~i(x’, y’).K(x’, y’) dx’dy’
i=l s

.K(x’, y’) dx’dy’. (6)

This equation may be interpreted in terms of the Green’s

function for each guide as follows. The dyadic Green’s

function can be found simply from the mode functions

using a procedure outlined in Collin and Zucker [13].

Equation (6] can be written as

2ha1= jj[:~+:@]ds’ ‘ (7)
s

where

Fr I

I ~ hqix(x, y)hqix(x’, y’) ~ hqix(x, y)hqiy(x’, y’) 1
Zq= ‘;l

i=l
q={a, b}.

~ hqiY(x, y)hqiX(x’, y’) ~ hqiY(x,-y)hqiY(x’, y’) ‘
Lj=~ j=l

tinuity of Et
I

K=.2x E~(K)lz.0= ~ dijxeai (3a)
j-l

I

K=,2x Eb(-K)lz.o= ~bi~xe~i. (3b)
i=l

Continuity of H, requires

I I

i=l i=l

The solution for the unknown quantity

obtained via several numerical approaches,

(4)

K could be

for example,

The modal solutions can be determined by firstly em-

ploying a spectral-domain formulation in the plane of the

fin, and then solving for the slot electric field. The electric

field is expressed in terms of a set of basis functions in the

context of the Galerkin method [1]–[5]. The resulting equa-

tion is first solved for the phase constants. The relative

weights of the basis functions, and, hence, the slot electric

field, are determined next. The knowledge of the modal

slot electric field can then be used to derive the modal

fields over the entire waveguide cross section by using a

transverse resonance technique [3]. The number of modes I

derived from this procedure is usually limited to a small
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number owing to the numerical difficulty of finding a large

number of orthogonal modes.

Following the. solution for K, the mode coefficients can

be found using (5). The scattering parameters can then be

determined from these mode coefficients following a renor-

malization for unit modal power. Assuming that the modes

have been normalized for j,je~ X h ~ds = 1, the scattering

parameters for the single propagating mode are given by

[14]

r ~p 11/2

$ [I eql X h:l ds
$ I

q~{a, b}, n={l,2}. (8)

III. SOLUTION USING THE GENERALIZED

VARIATIONAL TECHNIQUE

The approach for solving the discontinuity problem pre-

sented here considers the fields at the plane of the junction,

z = O, as the unknowns. Again, consider (7), which is of the

form Lf = g, where L is an integral operator, f is the

unknown (corresponding to K), and g is the known inci-

dent field (corresponding to h.l).

The unknown quantity f may be expressed as a super-

positiori of characteristic functions fn, which are recur-

sively generated by using a procedure given as follows. The

unknown f can be expressed as

f= f Cnfa. (9)
~=()

Consider an inner product defined by

(F, G) = j/F*. Gals. (lo)
s

The characteristic functions fn are L-orthogonal, and satisf y

(fn, Lfm) = qn8nm (11)

where tl~~ is the Kronecker delta function. A suitable set

of characteristic functions can be generated by

fn=~+ fn_,
l[unllz

(12)

where u ~ is an auxiliary function which satisfies the ortho-

gonality property

(Ua, %) =tnlm. (13)

The auxiliary function can be found by

un=un_l — in-1 Lfn-1 (14)

where

in-,=~.
n

Substituting (9) into LFg, and using the orthogonality
relationship (11) gives

%=+( fn>d. (15)

The routine for generating the characteristic functions and

their coefficients can be summarized as

u 240
n=() ‘0=11UO112

I
The Generalized Variational Technique may also be

applied to the equation LALf = LAg, where LA is the

adjoint integral operator. It should be pointed out that

LAL is positive definite; hence, the convergence of this

procedure is guaranteed to be monotonic. Now the genera-

tion routine becomes

rm–’”=(f”’LALf”)
~ = (fn, LAg)
n ‘V.

u ~+1 = Un – ;LALfn

L--- fn+l= ‘“+1 +fn. (,7)
11%+1112

These routines can be used to solve for the unknown

magnetic current in the junction plane of the finline dis-

continuity. A good choice for UO is .2X eal, where eol is

the incident transverse E-field mode function, with a possi-

ble alternative being .?X (eal + ebl). The coefficients c.,

and successive characteristic functions fn, are generated by

(16) or (17).

IV. NUMERICAL RESULTS

The results given here were generated using three wave-

guide modes for construction of the Green’s function.

These modes were generated in turn by using two basis

functions for Ex and E= in the plane of the fin. The basis

functions given in the Appendix were used with p = O, 1

and q = 2, 4. Let us now turn to the characteristic function

solution. Referring to (16) and (17), the initial auxiliary

function UO was chosen as 2 x e=l. This results in the first

characteristic function fo. Subsequent characteristic func-

tions fn, and coefficients c., can then be generated accord-

ing to (16) and (17). The fields over the waveguide cross

section were represented discretely at (m, n) points. That

is, the magnetic currents, characteristic functions, and

waveguide modes were represented by a matrix of points

over the shielded enclosure cross section. The mode coeffi-

cients and scattering parameters can then be found by

using (5) and (8).
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There is a shortage of data in the literature for compara-

tive purposes. Consider as an example finline in a WR-28

shield, for which mode-matching data is given in the paper

by Helard et al. [9]. The finline cross section shown in Fig.

1 gives the dimensional parameters. Figs. 4-7 show the

computed scattering parameters for a step discontinuity in

finline with a WR-28 shield. The equation Lf = g is used

here with one and two characteristic functions. As the

operator L is not positive definite, a monotonically conver-

gent solution as a function of the number of characteristic

functions is not guaranteed. It is important to verify that

for the single propagating mode, the numerical results

satisfy

IS1,12+ IS2J’=1. (18)

In drawing a comparison with the mode-matching data, it
should be pointed out that (18) is not satisfied well in [9].

Quite good agreement for Sll using one characteristic

function was achieved. There is a significant change in the

results for one and two characteristic functions. This change

can be attributed to the small number of modes available

for constructing the Green’s function and the fact that the
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solution does not converge monotonically with an increas-

ing number of characteristic functions.

A comparison between the equation Lf = g with one

and two characteristic functions, and the equation LALf =
LAg with two characteristic functions, is given in Figs.

8–11. Use of the positive definite operator improves the

behavior of the solution, but a larger number of waveguide

modes are required to improve the accuracy significantly.

The computed scattering parameters for a step discon-

tinuity in finline with a WR-62 shield, using the equation

Lf = g, are shown in Figs. 12–15. Equivalent circuits

for this problem using Sll have been generated by

El Hennawy and Schunemann using a mode-matching

technique [8]. A comparison with these results shows some

variation. Notice that the Generalized Variational Tech-

nique results with one characteristic function satisfy (18)

well. By increasing the number of characteristic functions

to two, the magnitude of SII approaches the results in [8],

but due to the small number of modes in the Green’s

function, the phase of Sll and the magnitude of S21 show

some deterioration in behavior. An indication of the accu-

racy of the mode solutions and the satisfaction of (18)
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cannot be determined from this mode-matching work [6],

[8].

It should be pointed out that the maximum number of

characteristic functions, and, hence, the accuracy of the

procedure, is limited by the number of waveguide modes

that have been used to construct the Green’s function. The
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V. CONCLUSION

The firdine step-discontinuity problem has been for-

mulated with an unknown magnetic current over the trans-

verse junction plane. A solution for this magnetic current

was obtained using an approach termed the Generalized

Variational Technique. This resulted in the scattering

parameters for the finline discontinuities. The computed

scattering parameters for example discontinuities com-

pared favorably with existing data. The approaches out-

lined can be applied to other metallized substrate wave-

guides. Further work remains to be done in order to

improve the accuracy of the solution, and it is important to

obtain experimental verification. If a larger number of

good solutions for the finline modes are used to construct

the Green’s function, more characteristic functions can be

used, resulting in a more accurate solution. It is, therefore,

necessa~ to imp~ove the accuracy of the higher order

mode solutions. An ihve;tigation related to the discontinu-

ity analysis of Sorrentino and Itoh [15], which was recently

published, is currently being pursued.

APPENDIX

The expansion of the slot fields in terms of known basis

functions is

13X(x) = $ a,f,(x) (Ala)
~=1

Q

E=(X)= z @q(4. (Alb)
q=l

A suitable set of basis functions is an orthogonal poly-

nomial set, modified by the edge condition. The functions

used are

, p=l,2,3, . . .

q=l,2,3, . . .

otherwise

(A2)

accuracy of the solution cannot be increased arbitrarily due

to the lack of availability of a large number of satisfactory

higher order modes. An approximate convergence criterion

for the maximum number of characteristic functions p,

with Q modes in the Green’s function. is u < a – 1.. . .

and {O(X) = PX(S, w), where PX(S, w) is a pulse function of

width w centered at x =s.
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